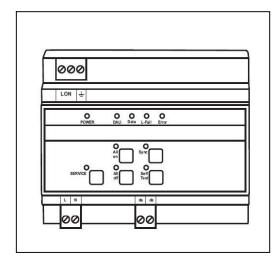
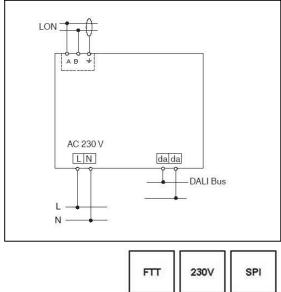
Art. No.: MTN887261

User Manual

LON DALI Controller DR-S 16DIM


Art. No.:MTN887261


Content

1.	Description	2
2.	Function	
3.	Mounting	
4.	Remarks	
5.	Technical Data	4
6.	Application description	5
6.1	System requirements	
6.2	Node object	
6.3	LampActuator	
6.4	Constant Light Controller	
6.5	GlobalControl	

Schneider Electric

Art. No.: MTN887261

1. Description

- control and supply of up to 64 DALI devices, divided into up to sixteen groups
- addressing of the DALI system with LNS plug-in
- provides DALI supply voltage, 16 V
- status monitoring of all connected DALI devices
- monitoring of all lamps (if DALI compatible)
- status LEDs for diagnostics and status indication
- manual operation for direct control of DALI devices
- DALI device replacement with manual operation
- pluggable screw-type terminals
- supply voltage: AC 230 V
- mounting on DIN-rail TH 35 according to EN 60 715
- width of device: approx. 105 mm (6 pitch)
- software application for control of up to 64 DALI devices, divided into four groups including timers, prioritized control and configurable reaction to power-down/power-up/bus reset.
 Furthermore, the application provides constant light and scene control according to LonMark profile "Lamp Actuator (3040)" and "Constant Light Controller (3050)".

Schneider Electric

Art. No.: MTN887261

2. Function

The LON DALI-Controller DR-S 16DIM provides a DALI output by which up to 64devices, divided into 16 groups can be controlled. To operate the device a supply voltage of AC 230 V is needed. The DALI bus voltage DC 16 V is generated by the device itself.

The current state of the LON DALI-Controller is indicated by the status LEDs. The control buttons on the casing provide direct control of the connected DALI devices.

The general state of the device is indicated by the power and service LEDs.

The software application is based on the LonMark profiles.

3. Mounting

The DALI-Controller has been designed as a device for mounting on DIN-rail TH 35 according to EN 60 715.

The bus cables, power supply cables and cables of the consumer loads/lamps are connected to the device by pluggable screw-type terminals. To simplify the mounting, the cables can be screwed to the unplugged terminals at first and the terminals can then be plugged into the fitted device.

All devices mounted next to the DALI-Controller have to be at least fitted with a basic insulation. The green power LED does not shine until an application program has been loaded into the device.

By pushing the service pin, the DALI-Controller is initiated to propagate its neuron ID. The service LED shows the state of programming.

To operate the device, an application program is needed.

4. Remarks

Electrical devices may only be fitted and mounted by a skilled person.

For planning and building electrical systems the relevant standards, guidelines, regulations and requirements of the particular country have to be considered. In addition to that, the device-specific instructions have to be considered as well. For project planning, mounting and commissioning, detailed knowledge about the LON technology is assumed.

The device's function depends on the applied software. Only application programs that are approved for this device may be loaded.

The builder of the LON system has to assure that the loaded application program and the configured parameters accord to the external circuit elements, especially if several programs for various applications are available for one device.

Schneider Electric

Art. No.: MTN887261

5. Technical Data

Power supply

Supply voltage: AC 230 V Input power: max. 22 mA

Network interface

Transceiver type: LON Free Topology Transceiver (TP/FT-10)

Outputs

Number: 1 (da) meets the DALI specifications of the ZVEI

Type: DALI interface

DALI network voltage: DC 16 V (basic isolation, not SELV)

DALI output current: max. 125 mA Number of DALI devices: max. 64

Controls

Service pin: Propagates the Neuron-ID

ALL on: To switch on all connected DALI devices
ALL off: To switch off all connected DALI devices
Sync: To adjust DALI devices to the LON network

Test: To test the DALI interface, the connected DALI devices and all lamps (if

the DALI compatible)

Indicators

Power LED: lit: operating power-on, module configured

Service LED: lit: network access error

flashes: module unconfigured

DALI LED: lit: DALI interface ready for operation
Data LED: lit: Transmission on the DALI bus
L-Fail LED: lit: Minimum one damaged lamp

Error LED: lit: DALI bus failure

All on LED: lit: DALI devices have been switched on locally All off LED: lit: DALI devices have been switched off locally

Sync LED: lit: The DALI Controller synchronises with the LON network

Self Test LED: lit: The DALI interface is tested

Connections

Power supply, DALI output, bus: pluggable screw-type terminal arrangement in a 0.5 .. 2.5 mm² grid

(single-core cable)

Housing

Dimensions: 86 x 105 x 58 mm (H x W x D), 6 pitch

Protection class: IP20

Site conditions

Operating temperature: -5 °C .. +45 °C

Max. humidity: 93 % relative humidity without moisture condensation

EC guidelines

Low-voltage guideline: 2006/95/EEC EMC directive: 2004/108/EEC

Schneider Blectric

Art. No.: MTN887261

6. Application description

The application "887261LC04d" is used for dimming and switching up to 64 DALI devices, split into 16 groups.

The integrated daylight-dependent controller can control a lighting group. The current controller value can be set from indoor or outdoor brightness sensors with a LON interface.

The application supports extended analysis of lamp failure messages from the DALI devices. These can be output commonly, as groups, or for the exact individual device. You can also analyse the proportion of faulty lamps in an affected group. Lamps used for emergency lighting can be checked and monitored separately from the assigned group.

Central commands can also be analysed. Separate scene storage is provided for this, allowing (e.g.) implementation of night-time effects.

The following LonMark objects are provided: "Node (#0)", "Lamp Actuator (#3040)" (16x), "Constant Light Controller (#3050)" (1x) and "Global Control (#3)" (1x).

The configuration of the DALI system is done using the Schneider LON DALI Controller LNS plug-in. The DALI devices found in a random order can be named and assigned to the 16 groups.

Combined with OSRAM i DALI devices (QTi, HTi ...) and LNS 3, "Offline" commissioning with serial numbers and barcodes is supported. The device buttons can be used for swapping faulty DALI devices at any time.

The plugin automatically generates an optimised dimming characteristic line in UCPTAdaptationTable[i].

The other application parameters can be conveniently edited using the Schneider Universal LNS plug-in (UPI).

6.1 System requirements

An LNS-compatible startup tool is required for the configuration of the application! "User-defined configuration property types" (UCPTs) are used as parameters in the DirectMemoryAccess. To be able to use the parameters, the Schneider device resource files (DRFs) need to be installed **before (!)** creating a device template.

For commissioning the DALI system, the LON DALI Controller plugin from Version 2.2 (dd.mm.jj) is required. The objects can be configured using the Universal plug-in.

The used LNS must be Version 2.0 or higher.

Schneider Blectric

Art. No.: MTN887261

Programming the DALI devices without an LNS tool

(Print this page and store it with the device!)

When expanding the system, swapping faulty devices, or changing the group assignments, the addressing and group assignments can be changed independently of LNS by using the buttons on the LON DALI Controller.

1. Preconditions

- The system has first been commissioned using the LON DALI Controller plug-in.
- The DALI groups can be individually controlled via LON.

2. Preparation

- Modify the DALI plant as desired (replace/add DALI devices).
- Ensure that all DALI devices are ready for operation, including the lamps. This can be
 automatically checked using the "Self Test" button. This checks the DALI cabling and all
 connected DALI devices. The test is passed when neither the "L-Fail" nor the "Error" LEDs
 illuminate after the test.

3. Begin programming

- Press and hold the "Sync" button for 3 seconds until the "Error" LED blinks twice and the "Sync" LED goes out.
- The lamps on all DALI devices switch on.
- After a short time the "Sync" LED begins to blink rapidly (0.4 s). If this does not happen, then at least one of the DALI devices is faulty or more than 64 DALI devices are connected.

Select the DALI device to be modified

- While operating, briefly remove the relevant lamp (min 5 seconds).
- The selection is confirmed when the lamp subsequently blinks once per second.
- The "Sync" LED also blinks once per second.

5. Program the group membership

- Operate the desired group using the LON control element.
- The DALI device is now automatically assigned to this group.
- The LON DALI Controller switches back to normal operation.
- 6. If further modifications are required, then repeat the process beginning at step 2.

Additional notes:

- The programming process can be interrupted at any time by pressing any device button.
- If new devices are logged by this procedure, then these do not automatically appear in the "LON DALI Controller plug-in" but must be loaded into the LNS database using "Device Search", in order to synchronise this with the LON network (this can be done by a system integrator during maintenance).
- A new group membership is directly displayed in the "LON DALI Controller plug-in".
- When swapping DALI devices, an attempt is made to retain the old device names. This can lead to confusion if more than one device is swapped at the same time.
- Only devices of one type should belong to a given group, since DALI devices with different characteristic lines may cause synchronisation problems when dimming.

Art. No.: MTN887261

Function

The device functions are split into the LonMark objects described in the following paragraphs:

6.2 Node object

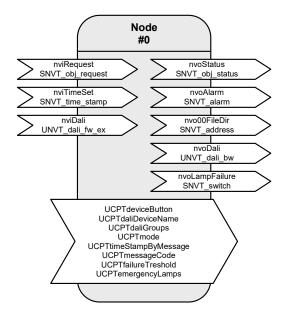


Table: Functions, parameters, and variables of the node object

Function	Network variable	Туре
Object status queries	nviRequest	SNVT_obj_request
Object status outputs	nvoStatus	SNVT_obj_status
Time values for alarm messages	nviTimeSet	SNVT_time_stamp
Alarm messages for logging	nvoAlarm	SNVT_alarm
Address of the configuration parameter	nvo00FileDir	SNVT_address
DALI plugin interface	nviDali	UNVT_dali_fw_ex
DALI plugin interface	nvoDali	UNVT_dali_bw
Lamp failure collective message	nvoLampFailure	SNVT_switch
Function	Configuration parameters	Туре
Device buttons	UCPTdeviceButton	UNVT_enabled
DALI device names	UCPTdaliDeviceName	LINIV/T etr ese 15
DALI device names	OCFIGALIDEVICENALLE	UNVT_str_asc_15
DALI groups	UCPTdaliGroups	SNVT_state
DALI groups	UCPTdaliGroups	SNVT_state
DALI groups Operating mode	UCPTdaliGroups UCPTmode	SNVT_state SNVT_state
DALI groups Operating mode Timestamp without "binding"	UCPTdaliGroups UCPTmode UCPTtimeStampByMessage	SNVT_state SNVT_state UNVT_enabled

Art. No.: MTN887261

nvoAlarm.value[0]

Lamp faults and fault messages

If a lamp fault is detected by a device on the DALI cable, then this is notified via the network variable nvoLampFailure = {100,0 1} and the "L-Fail" LED.

The network variable nvoAlarm can also be written at the same time to provide detailed information on the nature of the fault. This contains the following data:

nvoAlarm.location : Mounting location of the LON DALI Controller as a 6 byte location ID.

nvoAlarm.object_id : object_id of the LA object having a lamp fault. nvoAlarm.alarm type : AL NO CONDITION = Alarm removed;

AL_WARNING = Fault proportion below the critical threshold;

AL_ERROR = Fault proportion above the critical threshold;

AL_FATAL_ERROR = Emergency lighting faulty.
Group address of the newly affected DALI EVGs

nvoAlarm.value[1] : Index of the newly affected DALI EVGs (255 = not yet determined)

nvoAlarm.value[2] : Device status; 1 = Status not OK; 2 = Lamp fault;

245 = DALI cable occupied for too long; 250 = DALI short circuit;

254 = DALI device does not answer

nvoAlarm.value[3] : Proportion of faults in the affected group

in 0...200 -> 0...100% (0 when not yet determined)

nvoAlarm.alarm_limit[0]: Alarm counter, counts the emitted messages. Begins at zero after

255 messages. If nvoAlarm is cyclically polled then this value can be

used to define whether alarm messages are recorded.

A cyclic time telegram to the input nviTimeSet or broadcast messages from a system clock can be used to provide the messages at the nvoAlarm output with a timestamp of the actual time. The internal clock has an accuracy of ± 1 %.

When all lamps in a group function once more, the alarm is removed using nvoAlarm.alarm_type = AL_NO_CONDITION.

The alarm types can be influenced using the parameters UCPTfailureTreshold and UCPTemergencyLamps.

nviRequest can be used to repeat the output of the current fault messages of individual objects (RQ_UPDATE_ALARM).

Lamps designated as emergency lighting can be separately tested using this input. (RQ_OVERRIDE / RQ_RMV_OVERRIDE)

All devices together, a group, and an individual device are tested approximately every two seconds. This makes the collective fault message via nvolampFailure current within 2 seconds. A group fault message occurs with nvollarm.value[2] = 255. Up to 3 minutes can pass until the index of the affected device is displayed. The group fault messages can be suppressed by setting UCPTmode.bit0 = 1.

Energy saving mode

When all lamps on the LON DALI Controller are switched off (the "All off" LED illuminates) and no lamp failure has been reported, the test and the continuous sending of the current dimming value is interrupted so that the DALI devices can switch to the energy saving mode. However, this can be suppressed by setting UCPTmode.bit1 = 1.

Art. No.: MTN887261

Input variables

nviRequest - Object status queries

Type SNVT_obj_request

Value range Valid object id together with

RQ_NORMAL,

RQ_UPDATE_STATUS, RQ_REPORT_MASK, RQ_UPDATE_ALARM, RQ_OVERRIDE, RQ_RMV_OVERRIDE

Default value 0, RQ NORMAL

Description Input used to initiate the node status functions:

0 RQ NORMAL

All brightness values are synchronised with the LON input values, reflects the "Sync" button on the

front of the device.

1-4, RQ NORMAL

The brightness value of the specified channel is synchronised with the LON input value.

0, RQ SELF TEST

An internal self-test LON DALI Controller is performed, during the tests all status LEDs and lamps are briefly switched on, and once the test is finished the controller is returned to the starting state, reflects the "Self Test" device button.

0-4, RQ UPDATE ALARM

The last alarm message for the specified object is repeated.

0, RQ_OVERRIDE

The devices marked as emergency lighting are switched on.

0 RQ_RMV_OVERRIDE

The devices marked as emergency lighting are switched off.

nviTimeSet - Time values for alarm messages

Туре	SNVT_time_stamp
Value range	.year: -1 3.000 .month: 0 12 .day: 0 31 .hour: 0 23 .minute: 0 59 .second: 0 59
Default value	.year = 0 .month = 0 .day = 0 .hour = 0 .minute = 0 .second = 0
Description	Input for synchronising the internal clock. For alarm messages, the time is output with nvoAlarm.

Art. No.: MTN887261

Input variables

nviDaliEx - DALI plugin interface

Type UNVT_dali_fw_ex 0x000000 ... 0xffffff Value range

Default value 0x000000

Description Interface for the LON DALI Controller plugin, required exclusively for internal functionality and may

not be bound!

Output variables

nvoStatus - Object status output

Type SNVT_obj_status

Value range The status bits supported by the object:

.report_mask, .invalid_id, .invalid_request .in override

Default value All bits = 0

Description Sends the result of a query via nviRequest

nvoAlarm - Object status output

Type SNVT alarm Value range .location[6]: 0x00 ... 0xff (Location string) .object_id: AL_NO_CONDITION, AL_WARNING; AL_ERROR; AL_FATAL_ERROR .alarm_type: .priority_level: PR_LEVEL_0 .index_to_SNVT:0 0 ... 15 (DALI group address) .value[0]: 0 ... 64; 255 (DALI shortaddress) .value[1]: .value[2]: 0 ... 255 (device status) 0 ... 200 (0 ... 100% proportion of affected devices) .value[3]: -1 ... 3.000 .year: .month: 0 ... 12 .day: 0 ... 31 0 ... 23 .hour: .minute: 0 ... 59 .second: 0 ... 59 0 ... 999 .milisecond: 0 ... 255 (alarm number, distinguishing poll characteristic) .alarm limit[0]: .alarm_limit[1]: 0 .alarm_limit[2]: 0 .alarm_limit[3]: **Default value** All elements = 0

Description This output can be logged to provide exact details of lamp faults. The interpretation of the values is

described above.

Art. No.: MTN887261

Output variables

nvo00FileDir - Address of the configuration parameter

Type SNVT_address
Value range 0x0000 ... 0xffff

Default value 0x0000

Description Is required exclusively for internal functionality.

nvoDali - Plug-in interface

Type UNVT_dali_bw
Value range 0x0000 ... 0xffff

Default value Application-dependent

Description Interface for the LON DALI Controller plug-in, required exclusively for internal functionality and may

not be bound!

nvoLampFailure - Lamp failure collective message

Type SNVT_switch

Value range .value: 0; 100 %

.state: 0; 1

Default value .value = 0

.state = 0

Description This output emits {100,1} when at least one lamp is recognised as faulty. Details of the fault can be

taken from nvoAlarm. Fault-free DALI hardware is indicated by {0,0}.

Configuration parameters

UCPTdeviceButton - Device buttons

Type UNVT_enabled

Value range ENABLED, DISABLED

Default value ENABLED

Description For deactivating the device buttons.

UCPTdaliDeviceName - DALI device names

Type UNVT_str_asc_15

Value range ascii

Default value not in use

Description Individual name for each DALI device. (do not modify!)

Art. No.: MTN887261

Configuration parameters

UCPTdaliGroups - DALI groups

Type SNVT_state

Value range 0, 1

Default value 00000000000000000

Description Dali group information for internal management. (do not directly modify!)

UCPTmode - Operating mode

Type SNVT mode

Value range 0, 1

Default value 00000000000000000

Description Individual device properties can be switched on and off.

.bit0 = 1: Alarm messages without a device index are not output.

.bit1 = 1: No energy saving mode for "All off"

.bit2 = 1: No continuous repetition of the current dimming value

UCPTtimeStampByMessage - Time stamp without 'binding'

Type UNVT_enabled

Value range DISABLED, ENABLED

Default value ENABLED

Description The timestamp is sent/received as 'Explicit Message' (broadcast) without network variable linking.

UCPTmessageCode - 'Explicit Message' identification code

Type UNVT_message_code

Value range 0 ... 62 [1]

Default value 43

Description 'Explicit Message' identification code. This code must be set identically for the sender and

transmitter.

UCPTfailureTreshold - Failure limit

Type SNVT_lev_cont

Value range 0.0 ... 100.0 % [0.5 %]

Default value 0.0 %

Description If the number of faulty lamps in a group is more than the percent value specified here, then a fault

message instead of a warning is output.

Art. No.: MTN887261

Configuration parameters

UCPTemergencyLamps - Emergency lighting lamps

Type SNVT_state_64

Value range 0, 1

Default value All bits 0

Description The lamps marked here are treated as emergency lighting.

Art. No.: MTN887261

6.3 LampActuator

DALI Group (Index = 0 ... 15)

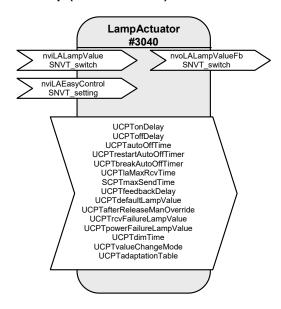


Table: Functions, parameters, and variables of the LampActuator object

Function	Network variable	Туре
Lamp input value	nviLALampValue	SNVT_switch
Lamp feedback output	nvoLALampValueFb	SNVT_switch
Advanced lamp input	nviLAEasyControl	SNVT_setting
Function	Configuration parameters	Туре
Switch-on delay	UCPTonDelay	UNVT_time_sec
Switch-off delay	UCPToffDelay	UNVT_time_sec
Automatic switch-off time	UCPTautoOffTime	UNVT_time_sec
Automatic switch-off time extendable	UCPTrestartAutoOffTimer	UNVT_boolean
Automatic switch-off time interruptible	UCPTbreakAutoOffTimer	UNVT_boolean
Maximum reception pause	UCPTlaMaxRcvTime	SNVT_time_sec
Maximum transmission pause	SCPTmaxSendTime	SNVT_time_sec
Feedback delay	UCPTfeedbackDelay	UNVT_time_msec
Default lamp value	UCPTdefaultLampValue	SNVT_switch
Override after release	UCPTafterReleaseManOverride	UNVT_switch_cfg
Lamp value when reception faulty	UCPTrcvFailureLampValue	SNVT_switch
Lamp value when power failure	UCPTpowerFailureLampValue	SNVT_switch
Total dimming time	UCPTdimTime	SNVT_time_sec
Fading times	UCPTvalueChangeMode	UNVT_change_md
Adaptation table	UCPTadaptationTable	UNVT_adapt_tbl

Art. No.: MTN887261

The "Lamp Actuator" objects represent the DALI groups in LON.

Every "Lamp Actuator" object has a normal and also a prioritised switch input for controlling the appropriate group. The function range is expanded by a setting input that allows relative brightness control, among other uses.

Different time functions, such as switch-on and switch-off delays, automatic switch-off (stairwell function), and feedback delays can all be set using parameters. The reaction to different power supply events (loss of power, power switch-on, restart) is also configurable.

Functions

Switching (with time functions)

Normally, the associated output is switched via the switch input variable <code>nvilAlampValue[i]</code>. A switch-on delay can be set for this output using the <code>UCPTonDelay[i]</code> variable, a switch-off delay can be set using <code>UCPToffDelay[i]</code>, and automatic switch-off (stairwell function) can be set using <code>UCPTautoOffTime[i]</code>. If automatic switch-off is running, then the parameter <code>UCPTrestartAutoOffTimer[i]</code> can be set to define whether this period may be extended or not and <code>UCPTbreakAutoOffTimer[i]</code> can be used to defined whether it may be interrupted.

Dimming (with Easy Control)

As well as LonMark, the switch input variable nvilAlampValue[i] is also intended for dimming.

For devices with dimming features, Schneider Electric offers the setting input variable nvilAEasyControl[i], which allows relative brightness changes and switching on with stored values (memory function).

Using .function = SET_UP or .function = SET_DOWN the lighting is dimmed relative to the value in .setting. The .function = SET STOP can be used to prematurely interrupt the process.

When switching off using .function = SET_OFF, the last brightness value is stored and then output again the next time a switch-on occurs via .function = SET_ON (memory function).

When using the "Easy Control" function, the dimming time over the entire brightness range from 0 to 100 % can be defined in the parameter $\mathtt{UCPTdimTime}[i]$.

The parameter UCPTvalueChangeMode[i] can be used to individually define "Dimming on" (.SoftOn), "Dimming off" (.SoftOff), and "Fade to new dimming value" (.SoftChange) (e.g. for scene changes in a scene control).

To reduce bus loading, a delay time between reception of a command and sending of the feedback can be set in the parameter <code>UCPTfeedbackDelay[i]</code>. This means that the output feedback value is not unnecessarily sent for every dim telegram, but rather via the output variable <code>nvolAlampValueFb[i]</code> when dimming is finished.

Example: Switching/Dimming using a button sensor

- Short button push: Alternates between SET_ON and SET_OFF. The actuator switches between the temporarily stored brightness value (memory value) and off.
- Longer button push: {SET_UP; 100 %; x} or {SET_DOWN; 100 %; x}, on release SET_STOP. The actuator dims in the specified direction using the time specified in UCPTdimTime[i]. SET_STOP interrupts the dimming process and the current brightness level is temporarily stored.

x = is ineffective, default setting can be retained.

Art. No.: MTN887261

Brightness-dependent control of multiple switching/dimming actuators

The "Lamp Actuator" object allows control of multiple switching/dimming actuators based on a common brightness value

A percentage brightness value, e.g. from a constant light regulator or a GLT, is specified via the inputs nvilAlampValue[i]. Local switch-off, or switching on to this lighting value, is done via the input nvilAlampValue[i].

When switching off using nvilAEasyControl[i]. function = SET_OFF, the last brightness value is stored and then output again the next time a switch-on occurs via .function = SET_ON (memory function). If a new brightness value is specified via nvilALampValue[i] while in a switched off state, the memory value is changed. This new value is then output at the next switch-on.

If an invalid value exists at nvilALampValue[i] (.state = -1) then control is done via the input nvilAEasyControl[i]. The reverse is also true, when nvilAEasyControl[i].function = SET_NUL (but only when!), then the lighting is controlled by nvilALampValue[i].

When the lighting is switched off, nvilAlampValue[i] is the same as the memory value. After a reset, or if an invalid value exists at nvilAlampValue[i] when the lights are switched off, the memory value is 100 %, so that the lights can be switched on again if necessary.

The lighting can be locally dimmed up (SET_UP) or down (SET_DOWN) via nvilAEasyControl[i]. This creates an offset that is carried over to nvilALampValue[i] when a new brightness value is specified.

If a locally selected brightness value (without an offset by the control system), then nvilAEasyControl[i] must be set using .function = SET_STATE (e.g. to call up scene values). The input nvilALampValue[i] is deactivated during SET_STATE commands.

If the valid brightness range is exceeded through the offset calculations, the brightness is set to 0.5 or 100 %. The offset overhang is internally stored and retained for brightness control via nvilAlampValue[i]. For local brightness changes via nvilAlasyControl[i] a new offset is generated each time — based on the actual brightness value.

Global/Effect control

The values from the "GlobalCtrl" object override with the priority of the LampActuator object. Commands with a priority of 0 are only accepted when nviLAlampValue is invalid (.state = -1).

For example, if a "Night effect" is to be implements, the parameter UCPTctrlOffOutput of the Constant Light Controller can be set so that an invalid value is output when absent. This leads to the effect value of the Global Controller being adopted when nobody is in the room.

Safety functions

The value to which the DALI devices are dimmed after a restart of the DALI controller is defined in parameter ${\tt UCPTdefaultLampValue[i]}$. This is also additionally directly stored in the DALI devices but may not be zero there. If the DALI devices receive power before the DALI controller comes online, then the DALI devices switch to their minimum brightness when ${\tt UCPTdefaultLampValue[i]} = 0$.

The value <code>UCPTpowerFailureLampValue[i]</code> is also transferred to the DALI devices and is adopted when the power supply of the DALI controller fails or the DALI cabling is damaged.

The parameter SCPTlaMaxRcvTime[i] is required for reception monitoring. If the appropriate "Lamp Actuator" input is not updated within the time specified here, then it is assumed that a transmission fault exists. The actuator then adopts the state specified in the parameter UCPTrcvFailureLampValue[i].

The output nvoLALampValueFb[i] can be cyclically sent over the period specified in SCPTmaxSendTime[i]. This allows the functioning of the DALI controller to be monitored with another LON device.

Art. No.: MTN887261

Input variables

nviLALampValue - Lamp input value

Type SNVT_switch

Value range .value: 0 ... 100 %

.state: 0, 1, -1

ON: .state = 1 and .value > 0

OFF: .state = 0 or .state = 1 and .value = 0

Default value UCPTdefaultLampValue[i]

Description Control input for switching and dimming the DALI groups.

nvilAEasyControl - Advanced lamp input

Type SNVT setting

Value range .function: SET_OFF, SET_ON, SET_UP, SET_DOWN, SET_STATE

.setting: 0 ... 100 %

Default value .function = SET_NUL

.setting = 0

Description The input is used for controlling an output via SNVT_setting. If this input is bound to

nvilALampValue[i], then it is used for switching and changing the default value stored there

(e.g. a regulator/controller).

SET_STATE: The .setting portion is interpreted in the same manner as the .value

portion of a switch input and directly jumped to or travelled to depending on

further parameter values.

SET UP.

SET DOWN: The output is relatively dimmed by the .setting proportion of the specified

value in the specified direction.

SET STOP: A running dimming process is stopped.

SET_OFF: The output is switched off and the last switch-on value is temporarily stored.

SET_ON: The output is switched on with the last stored value.

SET_NUL: Release for controlling via nvilAlampValue[i].

Output variables

nvoLALampValueFb - Lamp feedback output

Type SNVT_switch

Value range .value: 0 ... 100 %

.state: 0, 1, -1

ON: .state = 1 and .value > 0

OFF: .state = 0 or .state = 1 and .value = 0

Default value UCPTdefaultLampValue[i]

Description The current value/status of the switching channel is sent to the network here; either immediately

upon being changed or after a delay defined in ${\tt UCPTfeedbackDelay[i]}$. Switch-on and switch-off delays are regarded as being complete. This output can be cyclically sent over the period

specified in SCPTmaxSendTime[i].

When the DALI Controller is operated via the "All On" or "All Off" device buttons, this output is set to {0;-1} until a synchronisation with the LON network is done via the "Sync" button or a valid

telegram is received.

Art. No.: MTN887261

Configuration parameters

UCPTonDelay - Switch-on delay

 Type
 UNVT_time_sec

 Value range
 0 ... 65535 s [1 s]

Default value 0 s

Description Time between reception of an ON telegram and its execution.

UCPToffDelay - Switch-off delay

 Type
 UNVT_time_sec

 Value range
 0 ... 65535 s [1 s]

Default value 0 s

Description Time between reception of an OFF telegram and its execution.

UCPTautoOffTime - Automatic switch-off time

Type UNVT_time_sec **Value range** 0 ... 65535 s [1 s]

Default value 0 s

Description The output switches off once this time has expired (Stairwell switch-off). The time begins once an

ON telegram is received. The value 0 deactivates this function.

UCPTrestartAutoOffTimer - Automatic switch-off time extendable

Type UNVT_boolean Value range FALSE, TRUE

Default value TRUE

Description The automatic switch-off time can be restarted by further ON telegrams, even when it is already

switched on.

UCPTbreakAutoOffTimer - Automatic switch-off time interruptible

Type UNVT_boolean
Value range FALSE, TRUE

Default value FALSE

Description The output is prematurely switched off when an OFF telegram is received, also when an automatic

switch-off time is set.

UCPTlaMaxRcvTime - Maximum reception pause

Type SNVT_time_sec **Value range** 0.0 ... 6553.5 s [0.1 s]

Default value 0.0 s

Description The maximum time that may pass without an update to nviLampValue or nviEasyControl before the

lamp value is output during a reception fault. The value 0 deactivates this function.

Art. No.: MTN887261

Configuration parameters

SCPTmaxSendTime - Maximum transmission pause

Type SNVT_time_sec **Value range** 0.0 ... 6553.5 s [0.1 s]

Default value 0.0 s

Description The maximum interval for continuous transmission of the current value.

UCPTfeedbackDelay - Feedback delay

 Type
 UNVT_time_msec

 Value range
 0 ... 65535 ms [1 ms]

Default value 300 ms

Description Time by which the feedback value is delayed before being sent. Begins anew with every received

telegram. Required to reduce the bus load when dimming. Must be greater than the time between

two dim telegrams.

UCPTdefaultLampValue - Default lamp value

Type SNVT_switch

Value range .value: 0 ... 100 % [0.5 %]

.state: -1 ... 0 [1]

Default value 0.0 0

Description The value adopted by nviLampValue after power is restored or a reset is performed. The output

value is the result of the logical linking of the default input variable values. For -1 the output retains

its current setting.

UCPTafterReleaseManOverride - Override after release

Type UNVT_switch_cfg

Value range .function: SW_NUL, SW_HOLD, SW_VALUE;

.value: 0.0 ... 100.0 % [0.5 %]

Default value SW_NUL 0.0

Description The value adopted by the output after releasing the override mode. Override mode is executed by

the nviGCscene in the Global Control object when recalling a scene with high priority. SW_NUL ->

last valid value of nviLampValue is adopted; SW_HOLD -> current state is retained.

UCPTrcvFailureLampValue - Lamp value when reception faulty

Type SNVT_switch

Value range .value: 0 ... 100 % [0.5 %]

.state: -1 ... 0 [1]

Default value 0.0 -1

Description Value adopted by the output when no telegram is received within the maximum reception pause

period. (used for monitoring the data transfer.)

Art. No.: MTN887261

Configuration parameters

UCPTpowerFailureLampValue - Lamp value in case of power failure

Type SNVT_switch

Value range .value: 0 ... 100 % [0.5 %]

.state: -1 ... 0 [1]

Default value 0.0 -1

Description Value adopted by the output when the power fails. When .state = -1 the output retains its current

setting.

UCPTdimTime - Total dimming time

Type SNVT_time_sec

Value range 0.0 ... 6553.5 s [0.1 s]

Default value 4.0 s

Description The time required to dim from 100 % to 0 %.

UCPTvalueChangeMode - Fading times

Type UNVT_change_md

Value range SoftOn: 0,0 ... 6553.5 s [0,1 s];

SoftOff: 0,0 ... 6553.5 s [0,1 s]; SoftChange: 0,0 ... 6553.5 s [0.1 s]

Default value 0.0 0.0 0.0

Description Defines the cross-fade times for switch-on, switch-off, and value changes.

UCPTadaptationTable - Adaptation table

Type UNVT_adapt_tbl

Value range Byte[0 ... 20]: 0 ... 255 [1];

Default value 1 13 25 38 51 64 76 89 102 114 127 140 152 165 178 191 205 216 229 241 254

Description Table used to adapt the software to suit different hardware. (do not modify!)

Schneider Blectric

Art. No.: MTN887261

6.4 Constant Light Controller

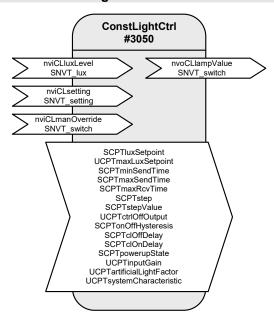


Table: Functions, parameters, and variables of the ConstLightCtrl object

Function	Network variable	Туре
Ambient light level input	nviCLluxLevel	SNVT_lux
Mode selection, setpoint adjustment	nviCLsetting	SNVT_setting
Control output for lamp	nvoCLlampValue	SNVT_switch
Manual override	nviCLmanOverride	SNVT_switch
Function	Configuration parameters	Туре
Desired brightness value	SCPTluxSetpoint	SNVT_lux
Maximum desired value	UCPTmaxLuxSetpoint	SNVT_lux
Minimum transmission interval	SCPTminSendTime	SNVT_time_sec
Maximum transmission pause	SCPTmaxSendTime	SNVT_time_sec
Maximum reception pause	SCPTmaxRcvTime	SNVT_time_sec
Maximum step size	SCPTstep	SNVT_lev_cont
Dimming step size	SCPTstepValue	SNVT_lev_cont
Output: Controller off	UCPTctrlOffOutput[2]	SNVT_switch_cfg
Switching hysteresis	SCPTonOffHysteresis	SNVT_lev_cont
Light switch-off delay	SCPTclOffDelay	SNVT_time_sec
Light switch-on delay	SCPTclOnDelay	SNVT_time_sec
Controller state on restoration of power	SCPTpowerupState	SNVT_setting
Input gain	UCPTinputGain	SNVT_muldiv
Artificial light factor	UCPTartificialLightFactor	SNVT_muldiv
Closed-loop control characteristic line	UCPTsystemCharacteristic[11]	SNVT_lev_cont

Schneider Electric

Art. No.: MTN887261

Daylight-dependent regulation/control

With a Constant Light Controller it is possible to regulate or control a lighting group on a daylight-dependent basis.

To do this, the measurement value of a LON brightness sensor at nviCLluxLevel[i] is internally converted to a brightness value with regard to a reference surface (e.g, a desktop) and used as a current value for the regulation algorithm.

Both indoor lighting sensors and shadowed outdoor lighting sensors (e.g. an indoor lighting sensor pointed at the window) can be used for control.

Operation

nviCLsetting[i] can be used to set the controller, and the lighting, on and off (SET_ON/SET_OFF), dimmed (SET_UP/SET_DOWN) or overwritten (SET_STATE). After dimming, the current value is stored as the new desired value and is then limited to a maximum value of UCPTmaxLuxSetpoint. After a restart, or a SET_ON value via nviCLsetting[i] the desired regulation value defined in SCPTluxSetpoint[i] is used.

Prioritised control

The input nviCLmanOverride[i] has the highest priority. A value at this input is directly forwarded to the lamp output.

The regulator

The regulator is a non-linear state regulator (fuzzy based), that can be used for both regulation (based on room brightness measurements) and control (by using an outdoor light sensor or measurements focused on a window).

On activation of the regulator, the object always operates as a controller to directly switch on the lighting with brightness near to the desired value. Cold light sources can result in an initially lower starting brightness in the room. This is intentionally accepted to take account of the subjective perception of the user. This behaviour avoids the user having the (subjective) impression that it is too dark in a situation where dimming is normally required (when the warm-up phase is finished).

After switching on and the desired value has been changed, the regulator maintains the set value for 30 s to allow the lighting to reach operating temperature or the light sensor to transmit the new brightness value, before beginning regulation. If switch-off and switch-on again occurs within this 30 s, then the lamps are switched on with the same brightness.

The regulation speed is dynamically adjusted depending on the regulation deviation. This can be changed as required via SCPTstep[i], which defines the maximum step size within 1 s for nvoCLlampValue[i].

If the calculated brightness value at the reference point lies above the value defined in SCPTonOffHysteresis[i] for the time specified in SCPTclOffDelay[i] then an automatic switch-off occurs. This also applies to automatic switch-on and SCPTclOnDelay[i]. The automatic switching can be deactivated by setting the respective delay time to 0.

Schneider Belectric

Art. No.: MTN887261

Notes on observing the network variables

The regulator does <u>not</u> regulate to nviCLluxLevel[i] = SCPTluxSetpoint[i] but rather to the internally calculated brightness of the reference surface.

Commissioning as a regulator

- 1. All required bindings must first be established. The room should be furnished to avoid any possible problems with furnishing-dependent reflections.
- 2. Calibrate the light sensor with a lux meter so that the brightness of the reference surface (e.g. desktop) is displayed under **daylight** conditions. The best result is achieved when this is done at brightness close to the desired value.

In most cases the procedure described above is sufficient for commissioning the regulator, and calibration of the regulator (steps 3 + 4) is not required, since the factory settings usually provide very good results. If further optimisation of the regulation is nevertheless required, then proceed as follows:

- 3. Directed artificial light is often not so strongly measured by a sensor on the ceiling as highly diffused natural light. This sensitivity difference can be compensated for using an artificial light factor (UCPTartificialLightFactor). To do this, the brightness change on the reference surface caused by artificial light and the associated change measured by the light sensor on the ceiling must be determined. Proceed as follows:
 - Remove the daylight source (if possible) and use nviCLsetting[i].function = SET_STATE and .setting = 100 % to switch-on all regulated light bands to the maximum value. After a warm-up time for the lighting (brightness remains constant), measure the brightness on the reference surface with a lux meter and note the output value of the LON light sensor. Then use nviCLsetting[i].function = SET_STATE and .setting = 0 to switch off the lights and measure both values again. Enter the change (difference) of the brightness on the reference surface into the .multiplier field, and the change in the brightness at the light sensor into the .divisor field of UCPTartificialLightFactor[i].

multiplier = Δ -Reference surface (lux meter) divisor = Δ -Ceiling (LON light sensor)

4. This completes the configuration process.

In weather situations with different levels of daylight diffusion, the current value of the reference surface may differ from the internally calculated value. If it is later determined that this causes the room to tend to be too dark, then you can increase <code>UCPTartificialLightFactor.divisor</code> somewhat (and vice versa).

Commissioning as a controller

- 1. All required bindings must first be established. The room should be furnished to avoid any possible problems with furnishing-dependent reflections.
- 2. To determine the artificial light factor (UCPTartificialLightFactor), proceed as follows: Remove the daylight source (if possible) and use nviCLsetting[i].function = SET_STATE and .setting = 100 % to switch-on all regulated light bands to the maximum value. After a warm-up time for the lighting (brightness remains constant), measure the brightness on the reference surface with a lux meter.

Then use <code>nviCLsetting[i].function = SET_STATE</code> and <code>.setting = 0</code> to switch off the lights and measure the value again. The measured change (difference) is then entered into the <code>.multiplier field</code>, the <code>.divisor</code> is set to 1.

```
multiplier = \Delta-Reference surface divisor = 1
```


Art. No.: MTN887261

- 3. Enter this current brightness value on the reference surface with the lighting switched off (nviCLsetting[i].function = SET_STATE and .setting = 0) into the input gain parameter (UCPTinputGain.multiplier). The associated current brightness value of the LON light sensor is entered into .divisor. The best result is achieved when this is done at a brightness close to the desired value, e.g. in cloudy weather or at dusk.
- 4. For optimisation of the closed-loop control characteristic line (UCPTsystemCharacteristic), the behaviour of the light sensor and lamps can be adjusted in 10 % steps. It should be noted that a continuously increasing characteristic line must be present, otherwise the behaviour can fluctuate significantly at different times of day and under different weather conditions, depending on the sensor type and installation location.
 - For approximate adjustment without accounting for sensor properties, one can use $nviCLsetting[i].function = SET_STATE$ to dim the bound lamps in 10 % steps (take account of warm-up times) and the determined difference to 0 % can then be entered into the appropriate fields of UCPTsystemCharacteristic[i]. When doing this, i = 0 for 0.5 %; i = 1 for 10 %; i = 2 for 20 % etc. Note that a constantly falling characteristic line must result.
- 5. This completes the configuration process.

General notes on fluorescent lamps

- The energy consumption of fluorescent lamps dimmed to the minimum value is approx. 13 %
- The lifetime of fluorescent lamps is heavily dependent on the switching frequency. For this reason, the lamps should only be switched off when the pause is longer than 15 minutes.
- Modern fluorescent lamps still have 90 % of their light flux after 10,000 operating hours. In the case of simpler models, the maximum light flux can sink to 75 %.
- New lamps must be burned-in for 100 hours at 100 % brightness before commissioning the object. This provides basic stabilisation of the lamps.

(Source: http://www.osram.de/service_corner/faq/allgemein/leuchtstoff.html)

Input variables

nviCLluxLevel - Ambient light level input

Type SNVT_lux

Value range 0 ... 65535 lux [1 lux]

Default value 0 lux

Description Input for the current brightness value.

nviCLsetting - Mode selection, setpoint adjustment

Type SNVT setting

Value range .function: SET_OFF, SET_ON, SET_UP, SET_DOWN

.setting: 0 ... 100 %

Default value UCPTpowerupState[i]

Description Activate (SET_ON) or deactivate (SET_OFF) the daylight-dependent regulation. On deactivation

nvoCLlampValue[i] and nvoCLsecondLamp[i] are set to {0, 0}, on activation both outputs are switched on with a value calculated by the regulator that is close the the desired value . SET_UP or SET_DOWN allow manual dimming of nvoCLlampValue[i]. Time delays for this dimming process are defined by the parameters SCPTstepValue[i] and SCPTminSendTime[i].

Regulation is deactivated during this time.

Once the manual control is finished, the current brightness becomes the temporary desired value

and regulation is reactivated.

SET_STATE sets both outputs to the value defined in .setting and regulation is deactivated. A new

SET_ON reactivates the desired value stored in SCPTluxSetpoint[i].

Art. No.: MTN887261

Intput variables

nviCLmanOverride - Manual override

Type SNVT_switch

Value range .value: 0 ... 100 % [0.5 %]

.state: -1 ... 0 [1]

Default value 0.0 -1

Description For. value <= 100, .state = 0/1 the regulation is deactivated. The received value is directly

forwarded to nvoCLlampValue[i], and nvoCLsecondLamp[i] is set under consideration of the offset

defined in UCPTclMaxDifference[i].

If priority control is removed once more and regulation reactivated, then .state must be set to -1.

Output variables

nvoCLlampValue - Control output for lamp

Type SNVT switch

Value range .value: 0 ... 100 % [0.5 %]

.state: -1 ... 0 [1]

Default value 0.0 -1

Description Provides the value for a dimming or switching actuator (lamp actuator) that was calculated by the

regulation process or manually set.

The output is suitable for binding another lighting regulator for additional lighting bands (up to

2 lighting groups).

Configuration parameters

SCPTluxSetpoint - Desired brightness value

Type SNVT_lux

Value range 0 ... 65535 lux [1 lux]

Default value 500 lux

Description The desired brightness value for the controller.

UCPTmaxLuxSetpoint - Maximum desired value

Type SNVT_lux

Value range 0 ... 65535 lux [1 lux]

Default value 0 lux

Description Maximum brightness value by which the desired value can be shifted (0 = unlimited).

Art. No.: MTN887261

Configuration parameters

SCPTminSendTime - Minimum transmission interval

Type SNVT_time_sec **Value range** 0.0 ... 6553.5 s [0.1 s]

Default value 0.2 s

Description The minimum interval between two consecutive telegrams. Used to limit the bus loading, among

other purposes.

SCPTmaxSendTime - Maximum transmission pause

Type SNVT_time_sec

Value range 0.0 ... 6553.5 s [0.1 s]

Default value 300.0 s

Description The maximum interval for continuous transmission of the current value.

SCPTmaxRcvTime - Maximum reception pause

Type SNVT_time_sec

Value range 0.0 ... 6553.5 s [0.1 s]

Default value 0.0 s

Description If no update to the lux value in nviCLluxLevel[i] is received within the time specified here, then a

fault in the LON network is assumed and the regulation assumes a sensor value of 0. The value 0

deactivates this function.

SCPTstep - Maximum step size

Type SNVT_lev_cont

Value range 0.0 ... 100,0 % [0.5 %]

Default value 3.0 %

Description The maximum step size used by the regulator to reach the desired value.

SCPTstepValue - Dimming step size

Type SNVT_lev_cont

Value range 0.0 ... 100.0 % [0.5 %]

Default value 5.0 %

Description Step size for consecutive dim commands.

UCPTctrlOffOutput - Output: Controller off.

Type UNVT_switch_cfg

Value range .function: SW_INVALID; SW_HOLD; SW_VALUE

.value: 0.0 ... 100.0 % [0.5 %]

Default value SW_HOLD 0.0 %

Description This value is output when the regulator is switched off or the state changes to vacant.

Art. No.: MTN887261

Configuration parameters

SCPTonOffHysteresis - Switching hysteresis

Type SNVT_lev_cont

Value range 0,0 ... 100.0 % [0.5 %]

Default value 5.0 %

Description Relative deviation from the desired value causing the regulator output to be automatically switched

on or off. The value 0 deactivates the automatic switching.

The lamp output is switched off when the lighting level lies above the desired value, plus this hysteresis value, for the time specified in SCPTclOffDelay[i]. The lamp output automatically switches on when the brightness value lies below the desired value, minus the hysteresis value, for

the time specified in SCPTclOnDelay[i].

SCPTclOffDelay - Light switch-off delay

Type SNVT_time_sec

Value range 0.0 ... 6553.5 s [0.1 s]

Default value 300.0 s

Description Time after which the regulator output is switched off when adequate brightness exists.

The controller remains active.

SCPTclOnDelay - Light switch-on delay

Type SNVT time sec

Value range 0.0 ... 6553.5 s [0.1 s]

Default value 0.1 s

Description Time after which the regulator output is switched on when inadequate brightness exists.

SCPTpowerupState - Controller state on restoration of power

Type SNVT_setting

Value range .function: SET_NUL, SET_OFF, SET_ON, SET_DOWN, SET_UP, SET_STOP, SET_STATE;

.setting: 0.0 ... 100.0 % [0.5]

Default value SET_ON 0.0 0.00

Description State of the light regulator object after restoration of power or a reset.

UCPTinputGain - Input gain

Type SNVT_muldiv

Value range multiplier: 0 ... 65535 [1]; divisor: 1 ... 65535 [1]

Default value 11

Description Level of input amplification for adjusting the sensor values with regard to the measured values on

the reference surface. Required when one sensor is bound to multiple controllers.

Art. No.: MTN887261

Configuration parameters

UCPTartificialLightFactor - Artificial light factor

Type SNVT_muldiv

Value range multiplier: 0 ... 65535 [1]; divisor: 1 ... 65535 [1]

Default value 700 350

Description Factor used to calculate the artificial light component of the measured brightness value. Settings:

see above.

UCPTsystemCharacteristic[11] - Closed-loop control characteristic line

Type SNVT_lev_cont

Value range 0.0 ... 100.0 % [0.5 %]

Default value 1.0 1.5 2.5 4.0 6.5 10.0 16.0 25.0 40.0 64.0 100.0

Description Defines the behaviour of the closed-loop control system. Settings: see above.

Art. No.: MTN887261

6.5 GlobalControl

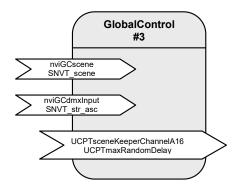


Table: Functions, parameters, and variables of the GlobalControl object

Function	Network variable	Туре
Global scene input	nviGCscene	SNVT_scene
Multiplex Input	nviGCdmxInput	SNVT_str_asc
Function	Configuration parameters	Туре
Scene storage for group switching	UCPTsceneKeeperChannelA16	UNVT_skca_16
Maximum random delay	UCPTmaxRandomDelay	SNVT_time_sec

Central control

The "Global Control" object allows all DALI groups to be switched by a central binding. The "Global Control" object directly affects the actuator.channels. This allows implementation of group switching or lighting effects.

At the nvigCscene input, freely definable scenes can be called up that define a separate brightness value for each actuator channel. Priorities of 0 (only adopted in absence mode), 1 (normal) and 2 (override) can be selected.

For temporal correction of central switching commands, the activation of the requested scenes can be parameterised with a configurable random period (UCPTmaxRandomDelay).

All actuator channels can be combined into an effects control system via nviGCdmxInput. However, the values are only adopted when the nviLAlampValue of the relevant object is invalid (-1).

Input variables

nviGCscene - Global scene input

Type SNVT_scene

Value range .function: SC_RECALL

.scene_number: 1 ... 10

Default value .function = SC NUL

.scene number = 0

Description Input for central activation/deactivation of functions (ON/OFF) of the individual actuator channels.

UCPTmaxRandomDelay can be used to define a device-specific random delay to avoid load peaks

in the central control system.

Art. No.: MTN887261

Input variables

nviGCdmxInput - Multiplex Input

Type SNVT_str_asc

Value range 0 ... 200

Default value

Description This input allows transfer of the dimming values for all channels at the same time. The element

.ascii[0] is the dimming value for nvolClampValue[0], the element ascii[1] is the dimming value for nvolCsecondLamp[0] and so on. The brightness values are only adopted

when the affected channel is not overridden and is in the absent state.

The values in .ascii[i] are interpreted as follows:

.ascii[i] = 0 \rightarrow from

.ascii[i] = 1 ... 200 \rightarrow Dimming value 0.5 ... 100 % in 0.5 % steps

→ Current brightness is not changed.

Configuration parameters

UCPTsceneKeeperChannelA16 - Scene storage for group switching

Type UNVT_skca_16

Value range 0 ... 255 [1] .scene:

.fadetime:

.priority: 0, 1

.chanel[16]: 0 ... 100 % [0.5 %] Dim value

0 ... 6.553 s [0.1 s]

100.5 % ... 127 % [0.5] Brightness is not changed

127.5 %

Override release without function

= i + 1**Default value** .scene

= 0.priority .chanel[16] = 0 .fadetime = 0

Scenes for common switching of the actuator channels: When setting nviGCscene = .scene, the Description

actuator channels are switched according to the entries in .channel[i]. The priority of the scene is

defined in the .priority field.

0: low priority, only adopted when nviLampValue is set to 0.0;-1.

1: normal priority

2: high priority (override)

UCPTmaxRandomDelay - Maximum random delay

SNVT_time_sec Type

Value range 0.0 ... 6553.5 s [0.1 s]

Default value 0.0 s

Description Maximum time between reception of a global telegram and its execution. (avoids electronic

switching spikes)